Morphic and Principal-ideal Group Rings
نویسنده
چکیده
We observe that the class of left and right artinian left and right morphic rings agrees with the class of artinian principal ideal rings. For R an artinian principal ideal ring and G a group, we characterize when RG is a principal ideal ring; for finite groups G, this characterizes when RG is a left and right morphic ring. This extends work of Passman, Sehgal and Fisher in the case when R is a field, and work of Chen, Li, and Zhou on morphic group rings.
منابع مشابه
The principal ideal subgraph of the annihilating-ideal graph of commutative rings
Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where $mathbb{P}(R)$ is...
متن کاملGeneralized Morphic Rings and Their Applications
Let R be a ring. An element a in R is called left morphic (Nicholson and Sánchez Campos, 2004a) if l a R/Ra, where l a denotes the left annihilator of a in R. The ring itself is called a left morphic ring if every element is left morphic. Left morphic rings were first introduced by Nicholson and Sánchez Campos (2004a) and were discussed in great detail there and in Nicholson and Sánchez Campos ...
متن کاملOn Commutative Reduced Baer Rings
It is shown that a commutative reduced ring R is a Baer ring if and only if it is a CS-ring; if and only if every dense subset of Spec (R) containing Max (R) is an extremally disconnected space; if and only if every non-zero ideal of R is essential in a principal ideal generated by an idempotent.
متن کاملGeneralizations of Morphic Group Rings
An element a in a ring R is called left morphic if there exists b ∈ R such that 1R(a)= Rb and 1R(b)= Ra. R is called left morphic if every element ofR is left morphic. An element a in a ring R is called left π-morphic (resp., left G-morphic) if there exists a positive integer n such that an (resp., an with an = 0) is left morphic. R is called left π-morphic (resp., left G-morphic) if every elem...
متن کاملGENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کامل